Product information

ANCAMINE® 2286

Curing Agent

DESCRIPTION

Ancamine 2286 is a very low viscosity modified cycloaliphatic amine curing agent intended for ambient or low temperature cure of liquid epoxy resins. Its low viscosity makes it especially suitable for heavily filled systems.

TYPICAL PROPERTIES

Property	Value	Unit				
Appearance	Water-White Liquid					
Color	1	Gardner				
Viscosity @ 77°F	60	сР				
Amine Value	325	mg KOH/g				
Specific Gravity @ 77°F	1.01					
Density @ 77°F	8.4	lb/gal				
Flash Point	100	°C				
Recommended use Level (EEW=190)	50	phr				

ADVANTAGES

- Very low viscosity
- Good chemical resistance (see following tables)
- Low color

APPLICATIONS

- Self-leveling flooring
- Mortars and concrete repair materials
- High-solids coatings
- Concrete sealers

STORAGE AND HANDLING

Refer to the Safety Data Sheet for Ancamine 2286 curing agent.

SHELF LIFE

At least 24 months from the date of manufacture in the original sealed container at ambient temperature. Store away from excessive heat and humidity in tightly closed containers.

TYPICAL CURE SCHEDULE

2 to 7 days at ambient temperature.

TYPICAL HANDLING PROPERTIES

Property	A *	В*	Unit	
Use Level	50	49	phr	
Mixed Viscosity @ 77°F	-	520	cP	
Gel Time (150g mix @ 77°F)	40	55	min	
Thin Film Set Time @ 77°F	6	10.5	hr	
@ 50°F	-	21	hr	
Peak Exotherm (100g mix @ 77°F)	280	-	°F	
Peak Exotherm Time	60	-	min	

TYPICAL PERFORMANCE (7 DAY CURE @ 77°F)

Property	B*	Unit
Glass Transition Temperature	113	°F
Compressive Strength @ yield	11,400	psi
Compressive Modulus	367	thousand psi
Tensile Strength	7,400	psi
Tensile Modulus	191	thousand psi
Tensile Elongation	5.7	%
Flexural Strength	11.800	psi
Flexural Modulus	431	thousand psi
Hardness	82	Shore D
Abrasion Resistance Weight Loss (@ 1,000 cycles with wheel no. 10)	0.039	grams
Mar Resistance	1.30	kg

A* Ancamine 2286 formulated with standard Bisphenol-A (DGEBA, EEW = 190) epoxy resin.

 B^* Ancamine 2286 with 90% DGEBA resin (EEW = 190) and 10% Epodil[®] 748 diluent (C_{12} - C_{14} alkyl glycidyl ether).

SUPPLEMENTAL DATA

CHEMICAL RESISTANCE: Chemical immersion studies following ASTM D543 were performed using Ancamine 2286 formulations cured for 7 days at 77°F. Ancamine 2286 curing agent was mixed in the recommended use levels with the following resins:

100% Bisphenol-A based liquid resin (EEW=190)
100% Bisphenol-F based liquid resin (EEW=172)
60 % Bisphenol-F (EEW=172) / 40% multifunctional epoxy novolac (EEW=176) resin blend
10% Cresyl glycidyl ether (CGE - Epodil 742) dilutedBisphenol-A resin (EEW=188)

Three samples were tested for each reagent. Table 1 shows the percent weight gain or loss after 3 days and 28 days for each of these formulations immersed in various chemicals at 77°F.

TABLE 1: CHEMICAL RESISTANCE FOR ANCAMINE 2286 FORMULATIONS % WEIGHT CHANGE AS A FUNCTION OF TIME

Reagent	with Bis-A Based Resin (EEW=190)		with Bis-F Based Resin (EEW=172)		with 60% Novlac Bl	Bis-F / 40% end	with 10% CGE Diluted Bis-A Resin		
	3 days	28 days	3 days	28 days	3 days	28 days	3 days	28 days	
Deionized Water	0.52	1.51	0.48	1.63	0.53	1.69	0.45	1.51	
Methanol	11.74	5.07	12.26	Dest.	11.97	2.50	14.29	5.90	
Ethanol	3.76	10.35	3.37	9.22	3.03	8.70	4.62	12.08	
Toluene	0.44	2.12	0.07	0.37	0.07	0.61	0.29	2.75	
Xylene	0.04	0.18	0.04	0.09	-0.01	0.09	0.03	0.19	
Butyl Cellosolve	2.02	5.86	1.05	3.30	0.84	2.92	2.36	8.92	
MEK	Dest.	Dest.	19.28	Dest.	20.00	11.75	Dest.	Dest.	
10% Lactic Acid	2.20	6.55	2.84	8.05	3.24	8.70	1.87	6.01	
10% Acetic Acid	3.32	9.27	3.85	10.77	4.50	12.69	2.90	8.68	
70% Sulfuric Acid	0.11	0.05	0.17	0.44	0.18	0.65	0.16	0.16	
98% Sulfuric Acid	Dest.	Dest.	1.53	-9.75	0.58	-4.46	Dest.	Dest.	
50% Sodium Hydroxide	0.64	0.54	0.03	0.02	-0.02	-0.04	0.00	-0.03	
10% Sodium Hypochlorite	0.47	1.22	0.50	1.27	0.56	1.48	0.39	1.25	
1,1,1 Trichloroethane	0.02	0.23	-0.01	0.12	0.04	0.24	0.03	0.47	

Dest. = Samples destroyed

Spillage resistance studies were conducted on Ancamine 2286 curing agent formulated with a 90% bis-A resin (EEW=190) and 10% Epodil 748 diluent (C₁₂-C₁₄ alkyl glycidyl ether) blend. Samples were cured for 7 days at 77°F; three samples were tested for each reagent. The immersion/recovery schedule for the testing is shown in Table 2. Percentage weight change and Shore D hardness were measured after each of the immersion periods. The samples were then allowed to recover before reimmersion for the next time period. Hardness retention is relevant in flooring applications where it indicates the ability of the floor to support traffic after exposure to chemical spills. Results of this study are presented in Table 3.

TABLE 2: SPILLAGE RESISTANCE TEST METHOD SCHEDULE

Castings of 1/8" thickness are immersed for specified time period. Sample is then removed, weighed, and hardness tested immediately. Sample is then allowed to recover for specified time before re-immersion.

3 hr imm \rightarrow test \rightarrow 24 hr recover \rightarrow 24 hr imm \rightarrow test \rightarrow 24 hr recover \rightarrow 3 day imm \rightarrow test \rightarrow 3 day recover \rightarrow 7 day imm \rightarrow test \rightarrow 7 day recover \rightarrow 90 day imm \rightarrow test

TABLE 3: SPILLAGE RESISTANCE FOR ANCAMINE 2286 WITH 90% DGEBA / 10% EPODIL 748 % WEIGHT CHANGE AND SHORE D HARDNESS AS A FUNCTION OF TIME

Reagent	Initial	After 3	3 hr	After 24 hr After 3 days		After 7 days		After 28 days		After 90 days			
	Hard	% wt.	Hard	% wt.	Hard	% wt.	Hard	% wt.	Hard	% wt.	Hard	% wt.	Hard
10% Acetic Acid	82	0.64	80	1.70	75	3.24	69	4.99	65	8.30	65	12.4	58
10% Lactic Acid	82	0.46	81	1.35	79	2.59	77	3.94	76	6.38	73	9.65	63
Toluene	82	0.02	80	0.80	75	3.01	68	6.43	56	19.39	50	12.69	57
Xylene	82	0.01	80	0.06	76	0.31	75	1.10	70	4.61	72	NM	NM
Trichloroethane	82	0.04	79	0.39	78	1.67	75	3.86	70	13.95	67	38.81	53
Methanol	82	3.23	65	8.47	34	11.09	22	DESTROYED					
Ethanol	82	0.94	75	2.78	62	5.33	48	8.20	44	8.21	49	5.67	60
Butyl Cellosolve	82	0.28	78	1.12	72	3.34	68	5.74	57	11.72	55	25.51	36
MEK	82	5.65	64					DESTF	ROYED				
Skydrol	82	0.06	77	0.27	74	0.80	73	1.49	70	2.59	76	3.99	63
70% Sulfuric Acid	82	0.17	83	0.11	82	0.16	82	0.20	82	0.20	81	0.21	81
98% Sulfuric Acid	82	-12.35	80	DESTROYED									
Deionized Water	82	0.17	82	0.31	82	0.58	82	0.99	82	1.77	80	1.91	80
50% Sodium Hydroxide	82	0.08	80	-0.06	79	-0.05	79	-0.05	79	-0.08	80	-0.15	58
Bleach	82	0.11	83	0.30	82	0.55	80	0.89	80	1.32	80	1.76	68

Note: Samples cured for 7 days at 77°F before testing

These studies show that Ancamine 2286 curing agent provides good resistance to a variety of chemcials. Compared with most curing agents, Ancamine 2286 provides very good resistance to solvents. Chemical resistance of 2286-based formulations can be optimized for specific chemicals using different resin blends. For information on the chemical resistance of many other Air Products curing agents, please refer to publication number 125-9326 (Rev 1996): "Chemical Resistance for Ambient Cure Epoxy Formulations."

CURE SPEED: The thin film set time of Ancamine 2286 curing agent with standard bisphenol-A resin (DGEBA, EEW=190) in a 6 mil film is 6.0 hours at 77°F. Using a 90% bisphenol-A resin/ 10% Epodil 748 diluent blend, the thin film set time is 10.5 hours at 77°F and 21 hours at 50°F. To speed thin film set time and hardness development, Ancamine 2286 can be accelerated with modified aliphatic amine curing agents such as 10% Ancamine 2089M, 10% Ancamine 2432, or 10% Ancamine 2481.

Ancamine® is a registered trademark of Evonik Industries AG or one of its subsidiaries.

Disclaimer

This information and any recommendations, technical or otherwise, are presented in good faith and believed to be correct as of the date prepared. Recipients of this information and recommendations must make their own determination as to its suitability for their purposes. In no event shall Evonik assume liability for damages or losses of any kind or nature that result from the use of or reliance upon this information and recommendations. EVONIK EXPRESSLY DISCLAIMS ANY REPRESENTATIONS AND WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, AS TO THE ACCURACY, COMPLETENESS, NON-INFRINGEMENT, MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE (EVEN IF EVONIK IS AWARE OF SUCH PURPOSE) WITH RESPECT TO ANY INFORMATION AND RECOMMENDATIONS PROVIDED. Reference to any trade names used by other companies is neither a recommendation nor an endorsement of the corresponding product, and does not imply that similar products could not be used. Evonik reserves the right to make any changes to the information and/or recommendations at any time. without prior or subsequent notice

EVONIK OPERATIONS GMBH

Business Line Crosslinkers Paul-Baumann-Str. 1 45764 Marl Germany

www.evonik.com/crosslinkers

Sample Request: APCSE@evonik.com Crosslinkers-Samples@evonik.com

EVONIK CORPORATION

Business Line Crosslinkers 7001 Hamilton Boulevard Trexlertown, PA 18087 USA

EVONIK SPECIALTY CHEMICALS (SHANGHAI) CO., LTD.

Business Line Crosslinkers 55, Chundong Road Xinzhuang Industry Park Shanghai, 201108 China

CL-Asiainfo@evonik.com CI -Asiainfo@evonik.com

