

Product information

SUNMIDE® CX-1151

Epoxy Curing Agent

DESCRIPTION

Sunmide CX-1151 curing agent is a phenalkamine based modified polyamine. This product can be used high-solids ambient-cure epoxy coatings by using liquid and semi-solid epoxy resin. Sunmide CX-1151 curative provides fast drying time at low temperature, high corrosion and chemical resistance. Sunmide CX-1151 curative is very well suited for use in the most demanding heavy-duty coatings applications at low temperatures.

TYPICAL PROPERTIES

Property	Value	Unit	Method
Appearance	Amber colored liquid		
Color	18 max	Gardner	
Solids content	80	%	
Viscosity @ 25°C / 77 °F	2,620	cP	
Amine Value	175	mg/KOH/g	
Specific Gravity @ 77°F	1.02		
Flash Point	60	°F	closed cup
Equivalent Wt/{H}	255		
Recommended Use Level	112	PHR	

ADVANTAGES

- Fast cure and drying time at low temperatures
- Good solvent resistance
- Good corrosion protection
- High gloss
- Good blush resistance

APPLICATIONS

- Marine coatings
- Industrial maintenance
- OEM primers
- High build and barrier coatings

SHELF LIFE

At least 24 months from the date of manufacture in the original sealed container at ambient temperature.

STORAGE AND HANDLING

Refer to the Safety Data Sheet on Sunamide CX-1151 curing agent.

TYPICAL HANDLING PROPERTIES

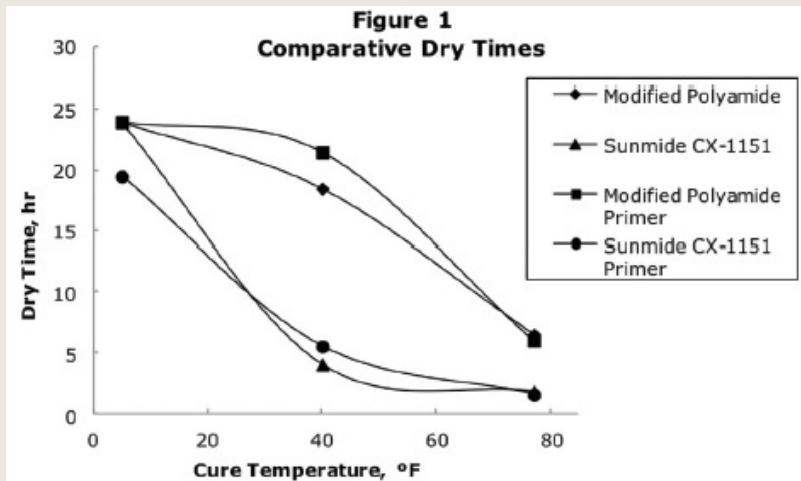
Property	Value	Unit	Method
Mixed Viscosity *	3,350	cPs	
Gel Time	62.7	min	150g mix
Thin Film Set Time @ 77°F	1.75	h	ASTM D 1544-80
Thin Film Set Time @ 40°F	4.00	h	ASTM D 1544-80
Thin Film Set Time @ 5°F	> 24	h	ASTM D 1544-80
Peak Exotherm	236	°F	100g mass
Peak Exotherm Time	45	min	

* Mix viscosity represents the viscosity after only mixing liquid epoxy resins and Sunamide CX-1151 curing Agent.

TYPICAL PERFORMANCE

Property	Value	Unit	Method
Glass Transition Temp	97	°F	
Hardness (Shore D)	52		
Adhesion to steel 7 day cure @ 77°F	100	psi	

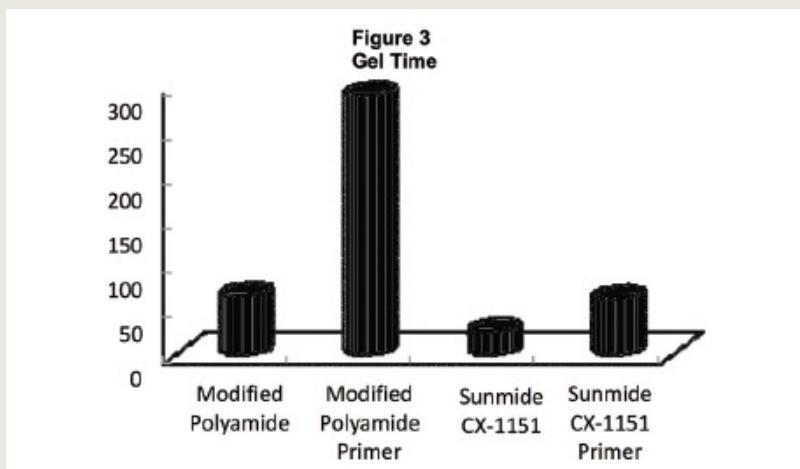
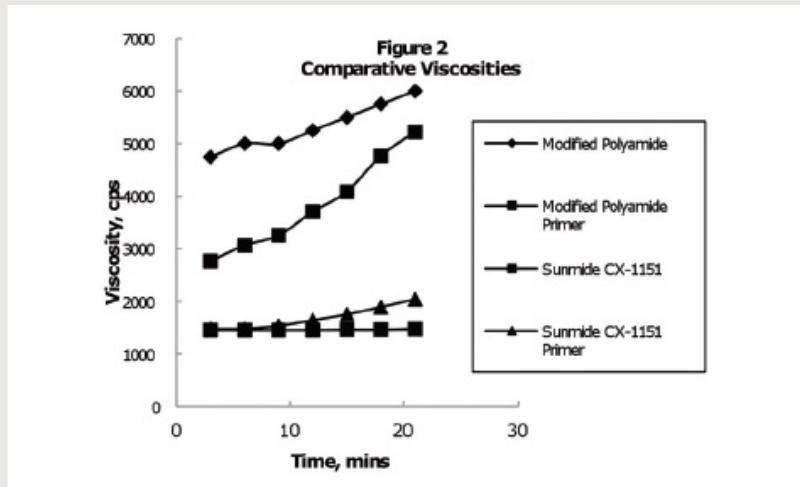
SUPPLEMENTARY DATA


FAST DRY TIME: Figure 1 shows the thin-film dry time of a modified polyamide and Sunmide CX-1151 curing agents mixed with liquid epoxy resins. Figure 1 also shows the thin film dry times of preliminary formulations based on a modified polyamide and Sunmide CX-1151 curative for anti-corrosive primers. The thin film dry time of Sunmide CX-1151 curing agent with liquid epoxy resin and of the primer based on Sunmide CX-1151 at room temperature and 40°F was much faster than a modified polyamide. The thin film dry time at low temperatures (5°F) of Sunmide CX-1151 and a modified polyamide curing agents with liquid epoxy resin was greater than 24 hours. The thin film dry time of the primer formulation based on Sunmide CX-1151 was about 19 hours and faster than the primer formulation based on a modified polyamide, which was over 24 hours.

Sunmide CX-1151 curing agent is designed to cure fast at temperatures as low as 5°F when mixed with liquid epoxy resins. It produces hard, high-gloss coatings which are highly resistant to amine blush even when cured at very low temperatures.

HARDNESS DEVELOPMENT: Gel time and thin film set time are good indicators of cure, but often do not accurately predict the development of hardness. Table 4 contrasts the Shore D hardness development of a modified polyamide and Sunmide CX-1151 curing agents mixed with liquid epoxy resins with preliminary formulations based on a modified polyamide and Sunmide CX-1151 curing agents for anti-corrosion primers.

VISCOSITY AND GEL TIME: Viscosity (Figure 2) and gel time (Figure 3) measurements at room temperature of a modified polyamide and Sunmide CX-1151 curing agents mixed with liquid epoxy resins, as well as preliminary formulations based on a modified polyamide and Sunmide CX-1151 for anti-corrosive primers, were measured over time to determine the working time of the formulations. The reactivity of Sunmide CX-1151 at room temperature was higher than that of a modified polyamide.



Similarly, the gel time of Sunmide CX-1151 curing agent mixed with liquid epoxy resin and primer formulation based on Sunmide CX-1151 curative at room temperature were shorter than a modified polyamide curing agent. This provides for a faster curing agent for low temperature applications.

Note: Set to touch times were measured using a BK dry time recorder.

TABLE 4: SHORE D HARDNESS DEVELOPMENT OF A MODIFIED POLYAMIDE AND SUNMIDE CX-1151 AS A FUNCTION OF 77°F CURE FOR A 1/4 INCH THICK CASTING.

	Modified Polyamide	Sunmide CX-1151	Modified Polyamide Primer	Sunmide CX-1151 Primer
1 Day	75	28	40	35
7 Days	78	69	52	42
14 Days	80	70	55	45

COATING PROPERTIES: Table 5 shows the coating properties of a modified polyamide and Sunamide CX-1151 curing agents mixed with liquid epoxy resins as well as preliminary formulations based on a modified polyamide and Sunamide CX-1151 for anti-corrosive primers.

TABLE 5: COATING PROPERTIES

	Modified Polyamide	Modified Polyamide Primer	Sunamide CX-1151	Sunamide CX-1151 Primer
Cure Time	7 days	7 days	7 days	7 days
Appearance	Clear, tack- free	Red,tack- free	Clear, tack- free	Red,tack- free
Direct Impact (in/lb)²	20	36	112	29
Reverse Impact (in/lb)²	0	0	20	0
Persoz Hardness	280	323	181	230
Gloss, 60°	107	87	123	61

Note: Pigmented formulations based on epoxy resin (EEW = 214) were mixed with each curing agent applied to cold rolled steel panels (S) (~4 mils DFT) and cured for 7 days at room temperature before testing.

Sunmide CX-1151 Starting Formulations

TABLE 6: EPOXY AND CURING AGENT MIXTURE ONLY

PART A		Weight %
Epon 828 (Epoxy Resin Solution, EEW=190)	Momentive Performance Materials	36.29
DER 671 X75 (EEW=650)	Dow Chemical Company	7.72
Epodil® 742 Diluent (EEW=182)	Evonik	3.09
PART B		
Sunmide CX-1151	Evonik	52.89
		TOTAL
		100.00

TABLE 7: PROPERTIES

Property	Value	Unit
Viscosity	3,350	cP
PVC	0	%
NVM	87.49	%
NVV	88.81	%
Density	1.08	g/mL
VOC	134.57	g/L

TABLE 8: PRIMER FORMULATION—PART A

Components	Weight %
Epon 828 (Epoxy Resin Solution, EEW=190)	28.44
DER 671 X75 (EEW=650)	6.05
Epodil® 742 Diluent (EEW=182)	2.42
Talc (Nicron 503)	20.58
Titanium Dioxide	6.05
Red Iron Oxide	3.63
Mica WG-325	6.05
Barium sulfate (barites)	14.52
Xylene	5.45
Methyl Ethyl Ketone	1.21
1-butanol	1.51
Dowanol PM Glycol Ether	2.66
Disparlon 6650	0.73
Silquest A 187	0.69
	TOTAL
	100.00

TABLE 9: PRIMER FORMULATION—PART B

Components		Weight %
Sunmide CX-1151	Evonik	94.79
Ancamine® K54	Evonik	0.64
Xylene	Fisher Scientific	2.29
1-butanol	Sigma-Aldrich	2.29
	TOTAL	100.00

Use Level, phr: 43.73

TABLE 10: PROPERTIES

Property	Value	Unit
Viscosity	1,475	cP
PVC	19.57	%
NVM	84.25	%
NVV	76.54	%
Density	1.37	g/mL
VOC	215.80	g/L

(1) Thin film Set Time in accordance with ASTM D5895 using a BYK drying time recorder, 77°F, 40°F and 5°F.

(2) Impact Resistance in accordance with ASTM D 2794

(3) Viscosity measurements - Brookfield viscometer LV, spindle 27, 77°F.

Modified Polyamide Starting Formulations

TABLE 11: EPOXY AND CURING AGENT MIXTURE ONLY

PART A		Weight %
Epon 828 (Epoxy Resin Solution, EEW=190)	Momentive Performance Materials	51.30
DER 671 X75 (EEW=650)	Dow Chemical Company	10.91
Epodil 742 Diluent (EEW=182)	Evonik	4.37
PART B		
Modified Polyamide	Evonik	33.42
	TOTAL	100.00

TABLE 12: PROPERTIES

Property	Value	Unit
Viscosity	4,750	cP
PVC	0	%
NVM	97.27	%
NVV	97.08	%
Density	1.10	g/mL
VOC	29.93	g/L

TABLE 13: PRIMER FORMULATION—PART A

Components	Weight %
Epon 828 (Epoxy Resin Solution, EEW=190)	Momentive Performance Materials 31.21
DER 671 X75 (EEW=650)	Dow Chemical Company 6.64
Epodil® 742 Diluent (EEW=182)	Evonik 2.66
Talc (Nicron 503)	Luzenac America, Inc. 23.90
Titanium Dioxide	Dupont 3.98
Red Iron Oxide	Heubach 2.66
Mica WG-325	Kings Mountain Minerals, Inc. 5.31
Barium sulfate (barites)	Cimbar Performance Material 6.64
Xylene	Fisher Scientific 6.64
Methyl Ethyl Ketone	Fisher Scientific 2.66
1-butanol	Sigma-Aldrich 2.66
Dowanol PM Glycol Ether	Eastman Chemical Company 2.66
Disparlon 6650	King Industries 0.80
Silquest A 187	Momentive Performance Materials 1.59
	TOTAL 100.00

TABLE 14: PRIMER FORMULATION—PART B

Components		Weight %
Modified Polyamide	Evonik	89.92
Ancamine® K54	Evonik	1.24
Xylene	Fisher Scientific	4.42
1-butanol	Sigma-Aldrich	4.42
	TOTAL	100.00

Use Level, phr: 22.61

TABLE 15: PROPERTIES

Property	Value	Unit
Viscosity	1,456	cP
PVC	20.16	%
NVM	85.10	%
NVV	76.75	%
Density	1.34	g/mL
VOC	200.16	g/L

(1) Thin film Set Time in accordance with ASTM D5895 using a BYK drying time recorder, 77°F, 40°F and 5°F.

(2) Impact Resistance in accordance with ASTM D 2794

(3) Viscosity measurements - Brookfield viscometer LV, spindle 27, 77°F.

CATHODIC DISBONDMENT

The increased use of cathodic protection in pipelines, ships, and other structures places additional demands on coating systems.

Cathodic protection prevents corrosion by converting the asset from an anode to a cathode using a connected sacrificial material to act as the anode. An electrical current may also be necessary.

Cathodic disbondment is a phenomenon during which a coating used in a cathodic protection service loses adhesion with the substrate metal. Cathodic disbondment can be affected by the coating formulation (including the curing agent), the extent of cure and coating thickness.

Evonik used industry standard ASTM G42 to challenge Sunmide CX-1151 in a primer formulation for cathodic disbondment. Designed to simulate pipeline coatings under elevated temperature, ASTM G42 calls for a standard coating formulation at 30-35 mil thickness to be immersed in an electrolyte solution for 28 days at 60°C. During the test, the reference and applied voltages were recorded along with the impressed current. After immersion, the panels were then washed, visually inspected, and attempts were made to remove the coating. The extent of disbondment was measured.

The results were as follows, indicating suitability of formulations using Sunmide CX-1151 cathodic protection service.

Properties	Sunmide CX-1151
Delamination	<1.0mm
Blistering	None
Observed corrosion	None
Recommendation	Recommended for CD applications

Appendix 1

The formulation parameters were as follows:

- Standard LER (EEW=190; DER 331 or Epon 828)
- PVC = 20%

Part A	Weight (kg)	Volume (gal)
Epon 828	327.30	33.74
Nuosperse 657	5.24	0.68
Xylene	70.04	9.68
MIBK	32.73	4.89
Aromatic 100	72.01	9.88
TiO ₂	130.92	3.93
Talcron MP 10-52	399.31	17.10
Part B	Weight (kg)	Volume (gal)
Sunmide CX-1151	425.0	50.0

TEST PARAMETERS:

Test parameters included both formulation parameters and cathodic disbonding test parameters.

The cathodic disbonding test parameters:

- 28 days of immersion at a constant 60°C
- Coating thickness of 30-35 mil
- Panel construction: hot rolled sand blasted steel
- Reference voltage: 1.5V
- 3% electrolyte solution comprised of 1 wt% each of: NaCl, Na₂SO₄, Na₂CO₃
- Reference electrode: Ag/Cl
- Holiday diameter: 1/4 inch

Sunmide® is a registered trademark of Evonik Industries AG or one of its subsidiaries.

Disclaimer

This information and any recommendations, technical or otherwise, are presented in good faith and believed to be correct as of the date prepared. Recipients of this information and recommendations must make their own determination as to its suitability for their purposes. In no event shall Evonik assume liability for damages or losses of any kind or nature that result from the use of or reliance upon this information and recommendations. EVONIK EXPRESSLY DISCLAIMS ANY REPRESENTATIONS AND WARRANTIES OF ANY KIND, WHETHER EXPRESS OR IMPLIED, AS TO THE ACCURACY, COMPLETENESS, NON-INFRINGEMENT, MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE (EVEN IF EVONIK IS AWARE OF SUCH PURPOSE) WITH RESPECT TO ANY INFORMATION AND RECOMMENDATIONS PROVIDED. Reference to any trade names used by other companies is neither a recommendation nor an endorsement of the corresponding product, and does not imply that similar products could not be used. Evonik reserves the right to make any changes to the information and/or recommendations at any time, without prior or subsequent notice.

EVONIK OPERATIONS GMBH
Business Line Crosslinkers
Paul-Baumann-Str. 1
45764 Marl
Germany

www.evonik.com/crosslinkers

Product Information: APCSE@evonik.com **Sample Request:** APCSE@evonik.com

EVONIK CORPORATION
Business Line Crosslinkers
7001 Hamilton Boulevard
Trexertown, PA 18087
USA

CrosslinkersProdinfo@evonik.com
Crosslinkers-Samples@evonik.com

EVONIK SPECIALTY CHEMICALS (SHANGHAI) CO., LTD.
Business Line Crosslinkers
55, Chundong Road
Xinzhuang Industry Park
Shanghai, 201108
China
CL-Asiainfo@evonik.com
CL-Asiainfo@evonik.com

